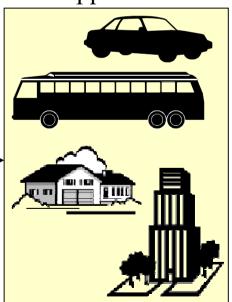

Hydrogen Fueling Systems and Infrastructure


Production

Storage & Delivery

Conversion & Application

Mark Paster

Objectives Hydrogen Production and Delivery

 Reduce the cost of distributed production of hydrogen from natural gas and/or liquid fuels to \$1.50/kg (delivered, untaxed) at the pump by 2010.

 By 2015, reduce the cost of H₂ fuel delivery from the point of production to the point of use in vehicles or stationary power units to <\$1.00/kg in total.

Targets and Status

Distributed H₂: Natural Gas, Liquid

Characteristics	Units	2003 Status	2005	2010
Reforming				
Natural gas cost	\$/kg H ₂	0.66	0.62	0.58
Other costs	\$/kg H ₂	3.08	1.36	0.24
Primary energy efficiency	% (LHV)	70	72	75
Total				
Total cost	\$/kg H ₂	5.06	3.00	1.50
Primary energy efficiency	% (LHV)	62	68	75

Barriers Distributed Hydrogen Production

- Fuel Processor Capital Cost
- Operation and Maintenance
- Feedstock Flexibility
- GHG Emissions
- Control and Safety

Development Focus

Distributed Production Costs, Reliability, and Safety

- More robust and tolerant catalyst system
- Combining unit operations: reforming, shift, separations, heat integration
- Designing for: manufacturability, operability, low maintenance, safety, compactness

Feedstock

- GHG emissions: renewable based feedstock
- Flexibility

Targets and Status

Hydrogen Delivery

Characteristics	Units	2003 status	2005	2010			
Gaseous Hydrogen Compression							
Cost	\$/kg H ₂	0.18	0.17	0.14			
Energy efficiency	%	90	92	95			
Hydrogen Liquefaction							
Cost	\$/kg H ₂	1.11	1.01	0.53			
Energy efficiency	%	65	70	87			
Hydrogen Gas Pipelines							
Trunk lines	\$/mile	1.4M	1.2M	600k			
Distribution lines	\$/mile	600k	500k	350k			
Hydrogen Carrier Technology							
Hydrogen content	% by wt	3	6.5	10			
Energy efficiency	%	80	82	85			

Barriers Hydrogen Delivery

- Lack of hydrogen/carrier and infrastructure options analysis
- High costs of hydrogen compression
- High costs of hydrogen liquefaction
- High capital cost of pipelines
- Solid and liquid hydrogen carrier transport
- Transport storage costs

Projects

Hydrogen Infrastructure Development

- Turnkey Commercial Hydrogen Fueling Station
- Air Products & Chemicals, Inc.
- Autothermal Cyclic Reforming-Based Fueling System
- **GE Energy**

- Natural Gas to Hydrogen Fuel Station
- Gas Technologies Institute
- Production & Delivery Analysis
- NREL
- H₂ Reformer, Fuel Cell Power Plant, & Vehicle Refueling System
- Air Products & Chemicals, Inc.

Projects (Continued) Hydrogen Infrastructure Development

Fuels Choice

TIAX

 Renewable Energy Transportation System Sunline

 Hydrogen Storage & Compression LAX, Praxair

Posters

Hydrogen Infrastructure Development

- Distributed Hydrogen Fueling Systems Analysis
- Power Park Analysis
- Power Parks
- Power Parks
- Power Parks
- Power Park System Simulation
- Filling Up With Hydrogen 2000
- Integrating a Hydrogen Energy Station into a Federal Building

Directed Technologies, Inc.

Air Products & Chemicals, Inc.

State of HI

Pinnacle West

DTE

SNL

Stuart Energy

TIAX